Package: GPareto 1.1.9
GPareto: Gaussian Processes for Pareto Front Estimation and Optimization
Gaussian process regression models, a.k.a. Kriging models, are applied to global multi-objective optimization of black-box functions. Multi-objective Expected Improvement and Step-wise Uncertainty Reduction sequential infill criteria are available. A quantification of uncertainty on Pareto fronts is provided using conditional simulations.
Authors:
GPareto_1.1.9.tar.gz
GPareto_1.1.9.zip(r-4.5)GPareto_1.1.9.zip(r-4.4)GPareto_1.1.9.zip(r-4.3)
GPareto_1.1.9.tgz(r-4.4-x86_64)GPareto_1.1.9.tgz(r-4.4-arm64)GPareto_1.1.9.tgz(r-4.3-x86_64)GPareto_1.1.9.tgz(r-4.3-arm64)
GPareto_1.1.9.tar.gz(r-4.5-noble)GPareto_1.1.9.tar.gz(r-4.4-noble)
GPareto_1.1.9.tgz(r-4.4-emscripten)GPareto_1.1.9.tgz(r-4.3-emscripten)
GPareto.pdf |GPareto.html✨
GPareto/json (API)
NEWS
# Install 'GPareto' in R: |
install.packages('GPareto', repos = c('https://mbinois.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mbinois/gpareto/issues
Last updated 10 months agofrom:fe43d0dd5d. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 02 2024 |
R-4.5-win-x86_64 | OK | Nov 02 2024 |
R-4.5-linux-x86_64 | OK | Nov 02 2024 |
R-4.4-win-x86_64 | OK | Nov 02 2024 |
R-4.4-mac-x86_64 | OK | Nov 02 2024 |
R-4.4-mac-aarch64 | OK | Nov 02 2024 |
R-4.3-win-x86_64 | OK | Nov 02 2024 |
R-4.3-mac-x86_64 | OK | Nov 02 2024 |
R-4.3-mac-aarch64 | OK | Nov 02 2024 |
Exports:checkPredictCPFcrit_EHIcrit_EMIcrit_optimizercrit_qEHIcrit_SMScrit_SURDTLZ1DTLZ2DTLZ3DTLZ7easyGParetoptimfastfungetDesignGParetoptimintegration_design_optimMOP2MOP3nonDomSetOKA1P1P2ParetoSetDensityplot_uncertaintyplotGParetoplotParetoEmpplotParetoGridplotSymDevFunplotSymDifRNPpredict_kmsZDT1ZDT2ZDT3ZDT4ZDT6
Dependencies:anMCbase64encbslibcachemcliDiceDesignDiceKrigingdigestemoaevaluatefastmapFNNfontawesomefsgluehighrhtmltoolshtmlwidgetsjquerylibjsonlitekernlabKernSmoothknitrKrigInvkslatticelifecyclemagrittrMASSMatrixmclustmemoisemgcvmimemulticoolmvtnormnlmepbivnormpracmapsoR6randtoolboxrappdirsRcppRcppArmadillorgenoudrglrlangrmarkdownrngWELLsasstinytexxfunyaml